If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+6x-36=0
a = 20; b = 6; c = -36;
Δ = b2-4ac
Δ = 62-4·20·(-36)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-54}{2*20}=\frac{-60}{40} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+54}{2*20}=\frac{48}{40} =1+1/5 $
| 2x+x+5+2x=+14 | | X-4+90=x | | 40+3x=4(-x+6)-33 | | 11x+12x+13x=180 | | |2a+5|=13 | | 5k-4=-19 | | 3/4s-3/4=5/8+7/4 | | 5k-4=-1 | | 1.13*10=n | | 4+x+7=4x-8 | | -67=-4n+3(1n/6) | | 2x^2-54x+360=0 | | 2.62H^5/2=x.04 | | 2x+3=1x10 | | 4m-m+4=10 | | 1x+5=90 | | 2.49H^.248=x.04 | | -67=-4+3(1n+6n) | | 4f-25=-2f-11 | | (1.00*1.00)/(293)=(x*1.00)/(493) | | 1/10=m12 | | 4m−m+4=10 | | 3x+8+2x=4x+10 | | 5=8–g | | 6h+18=12 | | 17k=-17 | | 5p+200=450 | | .3(x+30)-0.08(x-49)=16.6 | | 158=2x+4+(-6-21) | | 3t2-13t-10=0 | | 3*(x5)=90 | | 5.32=18-2x |